Node injection attacks on Graph Neural Networks (GNNs) have received emerging attention due to their potential to significantly degrade GNN performance with high attack success rates. However, our study indicates these attacks often fail in practical scenarios, since defense/detection methods can easily identify and remove the injected nodes. To address this, we devote to camouflage node injection attack, making injected nodes appear normal and imperceptible to defense/detection methods. Unfortunately, the non-Euclidean nature of graph data and lack of intuitive prior present great challenges to the formalization, implementation, and evaluation of camouflage. In this paper, we first propose and define camouflage as distribution similarity between ego networks of injected nodes and normal nodes. Then for implementation, we propose an adversarial CAmouflage framework for Node injection Attack, namely CANA, to improve attack performance under defense/detection methods in practical scenarios. A novel camouflage metric is further designed under the guide of distribution similarity. Extensive experiments demonstrate that CANA can significantly improve the attack performance under defense/detection methods with higher camouflage or imperceptibility. This work urges us to raise awareness of the security vulnerabilities of GNNs in practical applications. The implementation of CANA is available at https://github.com/TaoShuchang/CANA.
翻译:暂无翻译