Maximizing quality of experience (QoE) for interactive video streaming has been a long-standing challenge, as its delay-sensitive nature makes it more vulnerable to bandwidth fluctuations. While reinforcement learning (RL) has demonstrated great potential, existing works are either limited by fixed models or require enormous data/time for online adaptation, which struggle to fit time-varying and diverse network states. Driven by these practical concerns, we perform large-scale measurements on WeChat for Business's interactive video service to study real-world network fluctuations. Surprisingly, our analysis shows that, compared to time-varying network metrics, network sequences exhibit noticeable short-term continuity, sufficient for few-shot learning requirements. We thus propose Fiammetta, the first meta-RL-based bitrate adaptation algorithm for interactive video streaming. Building on the short-term continuity, Fiammetta accumulates learning experiences through offline meta-training and enables fast online adaptation to changing network states through a few gradient updates. Moreover, Fiammetta innovatively incorporates a probing mechanism for real-time monitoring of network states, and proposes an adaptive meta-testing mechanism for seamless adaptation. We implement Fiammetta on a testbed whose end-to-end network follows the real-world WeChat for Business traces. The results show that Fiammetta outperforms prior algorithms significantly, improving video bitrate by 3.6%-16.2% without increasing stalling rate.


翻译:互动视频流的经验最大化(QoE)是一个长期的挑战,因为它的延迟敏感性质使得它更容易受到带宽波动的影响。虽然强化学习(RL)已经展示出巨大的潜力,但现有的工程要么受到固定模型的限制,要么需要巨大的数据/时间用于在线适应,这是为了适应时间变化和不同的网络状态。受这些实际关切的驱使,我们在WeChat上进行大规模测量,用于商业互动视频服务,以研究现实世界网络波动。令人惊讶的是,我们的分析显示,与时间变化的网络衡量标准相比,网络序列具有明显的短期连续性,足以满足少见的学习要求。我们因此建议Fiammetta,这是首个基于元-RL的比特调整算法,用于互动视频流。在短期连续性的基础上,Fiammetta通过离线元培训积累学习经验,并通过一些梯度更新,使网上快速适应改变网络状态。此外,Fiammathatetta创新地纳入了实时监测网络状态的预设机制,并提议一个不作微调的Mex-C前程测试结果,用于无缝调整。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员