The semilocal meta generalized gradient approximation (MGGA) for the exchange-correlation functional of Kohn-Sham (KS) density functional theory can yield accurate ground-state energies simultaneously for atoms, molecules, surfaces, and solids, due to the inclusion of kinetic energy density as an input. We study for the first time the effect and importance of the dependence of MGGA on the kinetic energy density through the dimensionless inhomogeneity parameter, $\alpha$, that characterizes the extent of orbital overlap. This leads to a simple and wholly new MGGA exchange functional, which interpolates between the single-orbital regime, where $\alpha=0$, and the slowly varying density regime, where $\alpha \approx 1$, and then extrapolates to $\alpha \to \infty$. When combined with a variant of the Perdew-Burke-Erzerhof (PBE) GGA correlation, the resulting MGGA performs equally well for atoms, molecules, surfaces, and solids.


翻译:Kohn-Sham (KS) 密度功能理论的交换-关系功能半局部通用梯度近似值(MGGA) 可以同时产生精确的地面状态能量, 原子、 分子、 表面和固体, 这是因为将动能密度作为一种输入。 我们第一次研究MGGA依赖运动能量密度的影响和重要性, 其方式为无尺寸不相容参数 $\ alpha$, 这是轨道重叠程度的特点。 这导致一个简单和全新的MGGA 交换功能, 它在单轨道系统( $\ alpha=0) 和缓慢变化的密度系统( $\ alpha\ approx 1 $) 之间, 以及缓慢变化的密度系统( $\ alpha = approx 1) 之间, 然后将外推至 $\alpha \ \ to inty$。 当与 Perdew- Burke- ERhhoferhof (PEGGA) GGA 相关变体时, 结果MGGGGGGGGGGGGGGGA 表现同样好。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员