Autonomous motion planning is challenging in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in both simulation and real-world settings. Experimental results show that the proposed method generates smooth collision-free trajectories with less computation time compared with other benchmarks and performs robustly in cluttered environments. The source code is available at https://github.com/hanruihua/RDA_planner.
翻译:在多困难环境中,由于非Convex避免碰撞的限制,自动机动规划具有挑战性。直接将这些非Convex配方应用数字解算器无法利用制约结构,从而造成过长的计算时间。在本文中,我们提出了一个加速的无碰撞运动规划仪,即:固定的双向倍交错法(RDADMM或RDA短),用于基于模型的预测控制(MPC)运动规划问题。拟议的RDA处理非convex运动规划,通过双轨解决平滑的双convex重整,并允许为每个障碍同时计算避免碰撞的限制,以大幅缩短计算时间。我们通过在模拟和现实世界环境中与类似汽车的机器人进行路径跟踪实验来验证RDA规划仪的性能。实验结果表明,拟议的方法产生平稳的无碰撞轨迹,而与其他基准相比,计算时间较少,并且在杂乱的环境中执行。源代码见https://github.com/hanruihua/RDA_planner。