Deep learning models have achieved great success in recent years but progress in some domains like cybersecurity is stymied due to a paucity of realistic datasets. Organizations are reluctant to share such data, even internally, due to privacy reasons. An alternative is to use synthetically generated data but existing methods are limited in their ability to capture complex dependency structures, between attributes and across time. This paper presents STAN (Synthetic network Traffic generation with Autoregressive Neural models), a tool to generate realistic synthetic network traffic datasets for subsequent downstream applications. Our novel neural architecture captures both temporal dependencies and dependence between attributes at any given time. It integrates convolutional neural layers with mixture density neural layers and softmax layers, and models both continuous and discrete variables. We evaluate the performance of STAN in terms of the quality of data generated, by training it on both a simulated dataset and a real network traffic data set. Finally, to answer the question - can real network traffic data be substituted with synthetic data to train models of comparable accuracy? We train two anomaly detection models based on self-supervision. The results show only a small decline in the accuracy of models trained solely on synthetic data. While current results are encouraging in terms of quality of data generated and absence of any obvious data leakage from training data, in the future we plan to further validate this fact by conducting privacy attacks on the generated data. Other future work includes validating capture of long term dependencies and making model training


翻译:近些年来,深层学习模式取得了巨大成功,但在网络安全等某些领域,由于缺乏现实的数据集,进展受到阻碍。各组织由于隐私的原因,不愿分享这些数据,甚至内部也不愿分享这些数据。另一种办法是使用合成生成的数据,但现有方法在获取复杂的依赖结构、属性之间和跨时间的功能方面能力有限。本文介绍了STAN(合成网络生成自动递进神经模型和自动递进神经模型),这是一个为随后的下游应用生成现实的合成网络流量数据集的工具。我们的新神经结构在任何特定时间都捕捉到时间的时候依赖性和属性之间的依赖性。它将神经神经神经层与混合密度神经层和软体层结合起来,并采用连续和离散的变量模型。我们通过对STAN进行模拟数据集和真实网络流量数据集的培训,评估STAN在数据质量方面的性能。最后,解答这个模型——真实的网络流量数据数据可以依赖可比较准确性模型来培训可比的准确性模型?我们以自我校准的方式培训两个异常的检测模型。我们仅根据自我校准的自我校准的、连续和不连续数据计划的结果,我们只是根据经过培训的模拟数据流数据流数据生成的模型进行细化数据生成中的任何数据。我们目前数据周期数据生成数据生成中的任何数据生成中的任何数据周期数据生成数据生成数据生成的明显性。我们只是正在进行中的任何数据生成中的任何数据生成中的任何数据生成中的任何数据生成中的任何数据生成中的任何数据。我们进行中的任何数据生成中的任何数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
数字化健康白皮书,17页pdf
专知会员服务
107+阅读 · 2021年1月6日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员