Common kernel ridge regression is expensive in memory allocation and computation time. This paper addresses low rank approximations and surrogates for kernel ridge regression, which bridge these difficulties. The fundamental contribution of the paper is a lower bound on the rank of the low dimensional approximation, which is required such that the prediction power remains reliable. The bound relates the effective dimension with the largest statistical leverage score. We characterize the effective dimension and its growth behavior with respect to the regularization parameter by involving the regularity of the kernel. This growth is demonstrated to be asymptotically logarithmic for suitably chosen kernels, justifying low-rank approximations as the Nystr\"om method.
翻译:暂无翻译