We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
翻译:我们提出一种新的方法,通过不同的神经成像来自我监督地学习点云的表达方式。 信息化点云特征应该能够对丰富的几何和外观提示进行编码,并产生现实的图像。 我们基于这一事实,在设计好的点基神经转换器中训练一个点心编码器,将所提供的图像与大规模RGB-D数据的真实图像进行比较。 学习的点心编码器可以很容易地融入各种下游任务,其中不仅包括3D探测和分解等高级别任务,还包括3D重建和图像合成等低层次任务。 对各种任务的广泛实验表明,我们的方法比现有的培训前方法更优越。