项目名称: 快速响应的水凝胶超薄膜及其用于光学生物传感器的研究

项目编号: No.21274068

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 关英

作者单位: 南开大学

项目金额: 80万元

中文摘要: 以刺激响应型水凝胶为识别元件、利用光的干涉现象进行信号转换的光学传感器具有抗电磁干扰、无需标记等优点,但现有的此类传感器制备工艺复杂,响应速度慢,特别是响应慢制约了此类传感器的实际应用。本项目提出减小薄膜厚度,即使用厚度仅几百纳米至几微米的水凝胶超薄膜作为传感器的识别元件,可望有效提高传感器的响应速度。我们采用新的基于Fabry-Perot干涉条纹的光学传感方法,不引入有序结构,而是直接以水凝胶薄膜为Fabry-Perot谐振腔,通过Fabry-Perot干涉条纹的移动实现光学信号转换。采用层层自组装方法实现水凝胶超薄膜的制备,可方便地制备亚微米/微米级厚度的水凝胶超薄膜。通过引入功能性基团或能与被测物特异性结合或反应的蛋白或酶,得到刺激响应型层层组装水凝胶薄膜。新设计的传感器结构简单,无需特殊工艺设备,更重要的是能快速响应,可望解决现有传感器响应慢的问题。

中文关键词: 水凝胶;刺激响应;生物传感;光学传感;层层组装

英文摘要: Novel optical (bio)sensors have been designed by reporting an analyte-induced (de)swelling of a stimuli-responsive hydrogel with a suitable optical transducer, especially the ones using light interference and diffraction principles. These sensors are highly desirable as they are label-free, immune to electromagnetic interference and capable of performing remote sensing. However,some disadvantages, primarily the slow response of these sensors, hinder their practical applications.In this project, we aim to design and fabricate new hydrogel sensors capable of fast response.Ultrathin hydrogel films with a thickness ranging from several hundred nanometers to several microns will be fabricated using the layer-by-layer assembly method. Functional groups or enzymes will be introduced to render these films sensitive to the target analytes, such as glucose, pH, acetylcholine and creatinine. New Fabry-Perot sensing method will be used, through which the analyte-induced (de)swelling will be reported by the shift of the Fabry-Perot fringes, using the thin film itself as Fabry-Perot cavity. As the thickness of the hydrogel films used in the new sensors are 2 orders of magnititude thinner than the ones used before, fast reposnse is expected to be achieved for the new sensors.

英文关键词: hydrogels;stimuli-responsive;biosensing;optical sensing;layer-by-layer assembly

成为VIP会员查看完整内容
0

相关内容

专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
26+阅读 · 2021年4月21日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
【干货书】利用 Python 进行数据分析,470页pdf
专知会员服务
113+阅读 · 2021年3月13日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年10月19日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
12+阅读 · 2019年4月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
26+阅读 · 2021年4月21日
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
【干货书】利用 Python 进行数据分析,470页pdf
专知会员服务
113+阅读 · 2021年3月13日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员