Traditional semantic segmentation methods can recognize at test time only the classes that are present in the training set. This is a significant limitation, especially for semantic segmentation algorithms mounted on intelligent autonomous systems, deployed in realistic settings. Regardless of how many classes the system has seen at training time, it is inevitable that unexpected, unknown objects will appear at test time. The failure in identifying such anomalies may lead to incorrect, even dangerous behaviors of the autonomous agent equipped with such segmentation model when deployed in the real world. Current state of the art of anomaly segmentation uses generative models, exploiting their incapability to reconstruct patterns unseen during training. However, training these models is expensive, and their generated artifacts may create false anomalies. In this paper we take a different route and we propose to address anomaly segmentation through prototype learning. Our intuition is that anomalous pixels are those that are dissimilar to all class prototypes known by the model. We extract class prototypes from the training data in a lightweight manner using a cosine similarity-based classifier. Experiments on StreetHazards show that our approach achieves the new state of the art, with a significant margin over previous works, despite the reduced computational overhead. Code is available at https://github.com/DarioFontanel/PAnS.
翻译:传统语义分解方法在测试时只能识别训练中存在的课程。 这是一个重大的限制, 特别是对于在现实环境中部署的智能自主系统所安装的语义分解算法而言, 特别是在智能自主系统中安装的语义分解算法而言, 这是一项重大的限制。 无论系统在培训时看到多少个课程, 都不可避免地会出现出乎意料的、 未知的物体。 当在现实世界中部署时, 无法辨别这种异常现象, 配备这种分解模型的自主代理器的行为可能会导致不正确, 甚至危险。 异常分解的当前艺术状态使用基因化模型, 利用这些模型无法重建培训期间看不到的模式。 然而, 培训这些模型费用昂贵, 其产生的文物可能会造成虚假的异常现象。 在本文中, 我们选择了不同的路径, 我们建议通过原型学习来解决异常分解。 我们的像素是那些与模型所知道的所有类原型不相近的。 我们用一种轻量的方法从培训数据中提取了类原型, 使用一种基于 Cosine 类的分解器。 在StreadHazards 上进行实验显示我们的方法取得了新的高级标准。