The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
翻译:“ 请求测试- 释放” (PTR) 框架是一种典型的配方,用于设计具有数据适应性的有差别的私人(DP)算法,即当输入数据集良好时增加噪音较少的算法。我们将PTR扩展至一个更一般性的环境,通过私人测试数据依赖的隐私损失,而不是本地敏感度,从而使它不仅适用于标准的噪声添加机制,例如无限制或未定义的敏感度查询。我们用私人线性回归作为案例研究,展示了通用的PTR的多功能性。此外,我们运用我们的算法来解决一个开放的问题,即“教师群的私人聚合(PATE) ” (PATE) —— 以微妙的数据依赖分析私下释放整个模型。