In this paper, we consider the estimation of a low Tucker rank tensor from a number of noisy linear measurements. The general problem covers many specific examples arising from applications, including tensor regression, tensor completion, and tensor PCA/SVD. We consider an efficient Riemannian Gauss-Newton (RGN) method for low Tucker rank tensor estimation. Different from the generic (super)linear convergence guarantee of RGN in the literature, we prove the first local quadratic convergence guarantee of RGN for low-rank tensor estimation in the noisy setting under some regularity conditions and provide the corresponding estimation error upper bounds. A deterministic estimation error lower bound, which matches the upper bound, is provided that demonstrates the statistical optimality of RGN. The merit of RGN is illustrated through two machine learning applications: tensor regression and tensor SVD. Finally, we provide the simulation results to corroborate our theoretical findings.
翻译:在本文中,我们考虑从一些吵闹线性测量中估算低塔克级电压。一般问题包括应用产生的许多具体例子,包括高回归、高完成和高五氯苯甲醚/SVD。我们考虑对低塔克级电压估算采用高效的Riemannian Gauss-Newton(RGN)方法。不同于文献中对RGN的通用(超级)线性聚合保证,我们证明RGN在一些常规条件下对噪音环境下的低振幅估算是第一个当地四面式聚合保证,并提供相应的估计误差上限。提供了与RGN上限相符的确定性估计误差,以显示RGN的统计最佳性。RGN的优点通过两种机器学习应用:高回归和高压SVD来说明。最后,我们提供了模拟结果,以证实我们的理论结论。