Patch-based low rank is an important prior assumption for image processing. Moreover, according to our calculation, the optimization of l0 norm corresponds to the maximum likelihood estimation under random-valued impulse noise. In this article, we thus combine exact rank and l0 norm for removing the noise. It is solved formally using the alternating direction method of multipliers (ADMM), with our previous patch-based weighted filter (PWMF) producing initial images. Since this model is not convex, we consider it as a Plug-and-Play ADMM, and do not discuss theoretical convergence properties. Experiments show that this method has very good performance, especially for weak or medium contrast images.
翻译:以补丁为基础的低级别是图像处理的重要前置假设。 此外,根据我们的计算,降价标准优化与随机估价的脉冲噪音下的最大可能性估算相对应。 在本条中,我们因此将清除噪音的确切等级和降价标准组合在一起。它正式使用乘数交替方向法(ADMM)解决,而我们以前以补丁为基础的加权过滤器(PWMF)生成初始图像。由于这个模型不是混凝土,因此我们认为它是一个插接和叠接的ADMM, 不讨论理论趋同特性。 实验显示,这一方法效果非常好, 特别是对于弱或中度对比图像而言。