While AI has benefited humans, it may also harm humans if not appropriately developed. The focus of HCI work is transiting from conventional human interaction with non-AI computing systems to interaction with AI systems. We conducted a high-level literature review and a holistic analysis of current work in developing AI systems from an HCI perspective. Our review and analysis highlight the new changes introduced by AI technology and the new challenges that HCI professionals face when applying the human-centered AI (HCAI) approach in the development of AI systems. We also identified seven main issues in human interaction with AI systems, which HCI professionals did not encounter when developing non-AI computing systems. To further enable the implementation of the HCAI approach, we identified new HCI opportunities tied to specific HCAI-driven design goals to guide HCI professionals in addressing these new issues. Finally, our assessment of current HCI methods shows the limitations of these methods in support of developing AI systems. We propose alternative methods that can help overcome these limitations and effectively help HCI professionals apply the HCAI approach to the development of AI systems. We also offer strategic recommendations for HCI professionals to effectively influence the development of AI systems with the HCAI approach, eventually developing HCAI systems.


翻译:虽然大赦国际使人类受益,但如果没有适当发展,它也可能伤害人类; HCI 工作的重点是从与非AI型计算机系统的常规人类互动转向与AI系统的互动; 我们从HCI的角度对目前开发AI系统的工作进行了高级别文献审查和全面分析; 我们的审查和分析突出了AI型技术带来的新变化以及HCI专业人员在开发AI系统时应用以人为中心的AI(HCAI)方法时面临的新挑战; 我们还查明了HCI专业人员在开发非AI型计算机系统时没有遇到的与AI系统进行人类互动的七个主要问题; 为了进一步实施HCAI方法,我们查明了HCI 与特定HCAI驱动的设计目标挂钩的新机会,以指导HCI 专业人员处理这些新问题; 最后,我们对目前HCI 方法的评估表明这些方法在支持开发AI系统时的局限性; 我们提出了有助于克服这些限制的替代方法,并有效地帮助HCI 专业人员在开发AI系统时应用HCI 方法。 我们还为HCI 的专业人员提供战略性建议,以便HCI 有效影响AI 与HAI 系统的发展。

0
下载
关闭预览

相关内容

人机交互(Human-Computer Interaction,HCI)是一种多学科的期刊,它定义和报道了人机交互的基础研究。HCI的目标是成为一份高质量的日志,将最好的研究和设计工作结合起来,以扩展该期刊对人机交互的理解。目标受众是研究群体,他们对如何设计交互式计算机系统以及如何实际使用这些系统的科学意义和实际意义都感兴趣交互科学和系统设计影响用户的理论、经验和方法问题。官网链接:https://www.tandfonline.com/toc/hhci20/current
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员