Vocal fatigue refers to the feeling of tiredness and weakness of voice due to extended utilization. This paper investigates the effectiveness of neural embeddings for the detection of vocal fatigue. We compare x-vectors, ECAPA-TDNN, and wav2vec 2.0 embeddings on a corpus of academic spoken English. Low-dimensional mappings of the data reveal that neural embeddings capture information about the change in vocal characteristics of a speaker during prolonged voice usage. We show that vocal fatigue can be reliably predicted using all three kinds of neural embeddings after only 50 minutes of continuous speaking when temporal smoothing and normalization are applied to the extracted embeddings. We employ support vector machines for classification and achieve accuracy scores of 81% using x-vectors, 85% using ECAPA-TDNN embeddings, and 82% using wav2vec 2.0 embeddings as input features. We obtain an accuracy score of 76%, when the trained system is applied to a different speaker and recording environment without any adaptation.
翻译:vocal 疲劳是指由于使用时间过长而导致的声音疲倦感和声音疲劳感。 本文调查神经嵌入的效果, 以探测声音疲劳。 我们比较了 X 矢量器, ECAPA- TDNNN, 和 wav2vec 2. 0 嵌入在学术语言英语文集中。 数据的低维映射显示, 神经嵌入能捕捉到关于长时间使用声音时发言者声音特征变化的信息。 我们显示, 在对提取的嵌入器应用时间顺畅和正常化时, 连续发言仅50分钟后, 就可以可靠地预测所有三种神经嵌入器。 我们使用支持矢量机进行分类并达到81%的精确分数, 使用 ECAPA- TDNN 嵌入率为 85%, 使用 wav2vec 2. 0 嵌入为输入特性的精确度为82% 。 我们得到76%的准确分, 当经过培训的系统被应用到不同的发言者, 并且不作任何调整地记录环境时, 我们得到76%的准确分数。