Two-time-scale Stochastic Approximation (SA) is an iterative algorithm with applications in reinforcement learning and optimization. Prior finite time analysis of such algorithms has focused on fixed point iterations with mappings contractive under Euclidean norm. Motivated by applications in reinforcement learning, we give the first mean square bound on non linear two-time-scale SA where the iterations have arbitrary norm contractive mappings and Markovian noise. We show that the mean square error decays at a rate of $O(1/n^{2/3})$ in the general case, and at a rate of $O(1/n)$ in a special case where the slower timescale is noiseless. Our analysis uses the generalized Moreau envelope to handle the arbitrary norm contractions and solutions of Poisson equation to deal with the Markovian noise. By analyzing the SSP Q-Learning algorithm, we give the first $O(1/n)$ bound for an algorithm for asynchronous control of MDPs under the average reward criterion. We also obtain a rate of $O(1/n)$ for Q-Learning with Polyak-averaging and provide an algorithm for learning Generalized Nash Equilibrium (GNE) for strongly monotone games which converges at a rate of $O(1/n^{2/3})$.
翻译:暂无翻译