Considered here is a hypothesis test for the coefficients in the change-plane regression models to detect the existence of a change plane. The test that is considered is from the class of test problems in which some parameters are not identifiable under the null hypothesis. The classic exponential average tests do not work well in practice. To overcome this drawback, a novel test statistic is proposed by taking the weighted average of the squared score test statistic (WAST) over the grouping parameter's space, which has a closed form from the perspective of the conjugate priors when an appropriate weight is chosen. The WAST significantly improves the power in practice, particularly in cases where the number of the grouping variables is large. The asymptotic distributions of the WAST are derived under the null and alternative hypotheses. The approximation of critical value by the bootstrap method is investigated, which is theoretically guaranteed. Furthermore, the proposed test method is naturally extended to the generalized estimating equation (GEE) framework, as well as multiple change planes that can test if there are three or more subgroups. The WAST performs well in simulation studies, and its performance is further validated by applying it to real datasets.
翻译:暂无翻译