Pairwise comparison methods, such as Fuzzy Preference Relations and Saaty's Multiplicative Preference Relations, are widely used to model expert judgments in multi-criteria decision-making. However, their application is limited by the high cognitive load required to complete $m(m-1)/2$ comparisons, the risk of inconsistency, and the computational complexity of deriving consistent value scales. This paper proposes the Tournament Tree Method (TTM), a novel elicitation and evaluation framework that overcomes these limitations. The TTM requires only $m-1$ pairwise comparisons to obtain a complete, reciprocal, and consistent comparison matrix. The method consists of three phases: (i) elicitation of expert judgments using a reduced set of targeted comparisons, (ii) construction of the consistent pairwise comparison matrix, and (iii) derivation of a global value scale from the resulting matrix. The proposed approach ensures consistency by design, minimizes cognitive effort, and reduces the dimensionality of preference modeling from $m(m-1)/2$ to $m$ parameters. Furthermore, it is compatible with the classical Deck of Cards method, and thus it can handle interval and ratio scales. We have also developed a web-based tool that demonstrates its practical applicability in real decision-making scenarios.
翻译:暂无翻译