Understanding the complex structure of multivariate extremes is a major challenge in various fields from portfolio monitoring and environmental risk management to insurance. In the framework of multivariate Extreme Value Theory, a common characterization of extremes' dependence structure is the angular measure. It is a suitable measure to work in extreme regions as it provides meaningful insights concerning the subregions where extremes tend to concentrate their mass. The present paper develops a novel optimization-based approach to assess the dependence structure of extremes. This support identification scheme rewrites as estimating clusters of features which best capture the support of extremes. The dimension reduction technique we provide is applied to statistical learning tasks such as feature clustering and anomaly detection. Numerical experiments provide strong empirical evidence of the relevance of our approach.


翻译:了解多变极端的复杂结构是从组合监测和环境风险管理到保险等各个领域的一项重大挑战。在多变极端价值理论的框架内,极端依赖性结构的共同特征描述是三角尺度。这是在极端区域开展工作的恰当措施,因为它为极端群体往往集中其规模的次区域提供了有意义的见解。本文件为评估极端群体依赖性结构制定了一种新的优化方法。这一识别方案支持重写,以估计最能捕捉极端支持的特征组合。我们提供的减少维度技术应用到特征集群和异常现象探测等统计学习任务。数字实验为我们的方法的相关性提供了有力的实证证据。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
46+阅读 · 2020年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
1+阅读 · 2021年4月1日
Optimal Rates for Learning Hidden Tree Structures
Arxiv
0+阅读 · 2021年3月31日
Arxiv
31+阅读 · 2020年9月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
1+阅读 · 2021年4月1日
Optimal Rates for Learning Hidden Tree Structures
Arxiv
0+阅读 · 2021年3月31日
Arxiv
31+阅读 · 2020年9月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Top
微信扫码咨询专知VIP会员