Climate is known for being characterised by strong non-linearity and chaotic behaviour. Nevertheless, few studies in climate science adopt statistical methods specifically designed for non-stationary or non-linear systems. Here we show how the use of statistical methods from Information Theory can describe the non-stationary behaviour of climate fields, unveiling spatial and temporal patterns that may otherwise be difficult to recognize. We study the maximum temperature at two meters above ground using the NCEP CDAS1 daily reanalysis data, with a spatial resolution of 2.5 by 2.5 degree and covering the time period from 1 January 1948 to 30 November 2018. The spatial and temporal evolution of the temperature time series are retrieved using the Fisher Information Measure, which quantifies the information in a signal, and the Shannon Entropy Power, which is a measure of its uncertainty -- or unpredictability. The results describe the temporal behaviour of the analysed variable. Our findings suggest that tropical and temperate zones are now characterized by higher levels of entropy. Finally, Fisher-Shannon Complexity is introduced and applied to study the evolution of the daily maximum surface temperature distributions.
翻译:气候学研究很少采用专门为非静止或非线性系统设计的统计方法。这里我们展示了如何使用信息理论中的统计方法来描述气候领域的非静止行为,揭示了可能难以辨认的空间和时间模式。我们利用NCEP CDAS1每天的再分析数据,对地面两米以上的最高温度进行了研究,空间分辨率为2.5乘2.5度,覆盖的时间为1948年1月1日至2018年11月30日。温度序列的空间和时间演变是利用渔业信息测量法进行的,该测量法将信息量化为信号,而香农 Entropy Power则是测量其不确定性 -- -- 或不可预测性的尺度。结果描述了所分析的变量的时间行为。我们的调查结果表明,热带和温带地区现在的特点是高温水平。最后,Fisher-Shannon 复杂度被引入并用于研究每日最高地表温度分布的演变。