For an $N \times T$ random matrix $X(\beta)$ with weakly dependent uniformly sub-Gaussian entries $x_{it}(\beta)$ that may depend on a possibly infinite-dimensional parameter $\beta\in \mathbf{B}$, we obtain a uniform bound on its operator norm of the form $\mathbb{E} \sup_{\beta \in \mathbf{B}} ||X(\beta)|| \leq CK \left(\sqrt{\max(N,T)} + \gamma_2(\mathbf{B},d_\mathbf{B})\right)$, where $C$ is an absolute constant, $K$ controls the tail behavior of (the increments of) $x_{it}(\cdot)$, and $\gamma_2(\mathbf{B},d_\mathbf{B})$ is Talagrand's functional, a measure of multi-scale complexity of the metric space $(\mathbf{B},d_\mathbf{B})$. We illustrate how this result may be used for estimation that seeks to minimize the operator norm of moment conditions as well as for estimation of the maximal number of factors with functional data.
翻译:$N\timettt 随机基质 $X(\\beta){(leq) CK\left(sqrt) coUGB(N,T)}+\gamma_2(\\mathbbf{B})\bf{B}B}美元,对于可能依赖可能无限的参数$\bet\在\mathbffnB}B}B$的美元,我们获得一个统一的其操作者规范标准,即:$mathbb{E}E}\\\\\\sup{(sup\mab{B}}}(美元)的增量),以及$gammama___X( 2(\bet)\\\\\\(lebet)\\\ leqleQKKKKKKK {(= gamamama____x增增量) 美元和 =gama_gama_( mabru) 的底數的底數行的底數行數行行行行行行行行的數行數行行行行行行行行行數的數行數行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行的數行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行的行行行行行行行行行行行行行行行行行行行行行行行行行行行行的行行的行的