Mapping Low Dynamic Range (LDR) images with different exposures to High Dynamic Range (HDR) remains nontrivial and challenging on dynamic scenes due to ghosting caused by object motion or camera jitting. With the success of Deep Neural Networks (DNNs), several DNNs-based methods have been proposed to alleviate ghosting, they cannot generate approving results when motion and saturation occur. To generate visually pleasing HDR images in various cases, we propose a hybrid HDR deghosting network, called HyHDRNet, to learn the complicated relationship between reference and non-reference images. The proposed HyHDRNet consists of a content alignment subnetwork and a Transformer-based fusion subnetwork. Specifically, to effectively avoid ghosting from the source, the content alignment subnetwork uses patch aggregation and ghost attention to integrate similar content from other non-reference images with patch level and suppress undesired components with pixel level. To achieve mutual guidance between patch-level and pixel-level, we leverage a gating module to sufficiently swap useful information both in ghosted and saturated regions. Furthermore, to obtain a high-quality HDR image, the Transformer-based fusion subnetwork uses a Residual Deformable Transformer Block (RDTB) to adaptively merge information for different exposed regions. We examined the proposed method on four widely used public HDR image deghosting datasets. Experiments demonstrate that HyHDRNet outperforms state-of-the-art methods both quantitatively and qualitatively, achieving appealing HDR visualization with unified textures and colors.
翻译:将不同曝光的低动态范围(LDR)图像映射到高动态范围(HDR)图像在动态场景中易受物体运动或相机晃动引起的鬼影的影响,一直是一个非常棘手的问题。随着深度神经网络(DNN)的成功,已经提出了几种基于DNN的方法来减轻鬼影,但是当运动和饱和发生时,它们无法生成令人满意的结果。为了在各种情况下生成视觉上令人满意的HDR图像,我们提出了一种混合式HDR去除鬼影网络,称为HyHDRNet,用于学习参考图像和非参考图像之间的复杂关系。提出的HyHDRNet由内容对齐子网络和基于Transformer的融合子网络组成。具体来说,为了有效地避免源中的鬼影,内容对齐子网络使用补丁聚合和鬼影注意力以像素级别整合来自其他非参考图像的相似内容并在补丁级别抑制不必要的组件。为了实现补丁级别和像素级别之间的相互指导,我们利用门控模块充分交换鬼影和饱和区域中的有用信息。此外,为了获取高质量的HDR图像,基于Transformer的融合子网络使用残差可变形Transformer块(RDTB)来自适应地合并不同暴露区域的信息。我们在四个广泛使用的公共HDR图像去除鬼影数据集上测试了所提出的方法。实验表明,HyHDRNet在定量和定性上都优于现有最先进的方法,实现了具有统一纹理和颜色的吸引人的HDR可视化。