As the Internet grows in size, so does the amount of text based information that exists. For many application spaces it is paramount to isolate and identify texts that relate to a particular topic. While one-class classification would be ideal for such analysis, there is a relative lack of research regarding efficient approaches with high predictive power. By noting that the range of documents we wish to identify can be represented as positive linear combinations of the Vector Space Model representing our text, we propose Conical classification, an approach that allows us to identify if a document is of a particular topic in a computationally efficient manner. We also propose Normal Exclusion, a modified version of Bi-Normal Separation that makes it more suitable within the one-class classification context. We show in our analysis that our approach not only has higher predictive power on our datasets, but is also faster to compute.


翻译:随着互联网规模的扩大,基于文本的信息数量也随之增加。对于许多应用空间来说,孤立和识别与特定主题有关的文本至关重要。虽然单类分类是进行这种分析的理想方法,但相对缺乏对预测力高的有效方法的研究。我们注意到,我们希望确定的文件范围可以作为矢量空间模型中代表我们文本的正线性组合来表示,因此我们建议Concical分类,这种方法使我们能够以计算效率的方式确定文件是否属于特定主题。我们还提议了正常排斥,即经过修改的双类分离版本,使之更适合单类分类。我们的分析表明,我们的方法不仅对我们数据集具有更高的预测力,而且更快地进行了计算。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
One-Class Classification: A Survey
Arxiv
8+阅读 · 2021年1月8日
Arxiv
15+阅读 · 2019年6月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
One-Class Classification: A Survey
Arxiv
8+阅读 · 2021年1月8日
Arxiv
15+阅读 · 2019年6月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
5+阅读 · 2017年4月12日
Top
微信扫码咨询专知VIP会员