We introduce an extended discontinuous Galerkin discretization of hyperbolic-parabolic problems on multidimensional semi-infinite domains. Building on previous work on the one-dimensional case, we split the strip-shaped computational domain into a bounded region, discretized by means of discontinuous finite elements using Legendre basis functions, and an unbounded subdomain, where scaled Laguerre functions are used as a basis. Numerical fluxes at the interface allow for a seamless coupling of the two regions. The resulting coupling strategy is shown to produce accurate numerical solutions in tests on both linear and non-linear scalar and vectorial model problems. In addition, an efficient absorbing layer can be simulated in the semi-infinite part of the domain in order to damp outgoing signals with negligible spurious reflections at the interface. By tuning the scaling parameter of the Laguerre basis functions, the extended DG scheme simulates transient dynamics over large spatial scales with a substantial reduction in computational cost at a given accuracy level compared to standard single-domain discontinuous finite element techniques.
翻译:在多维半无限域中,我们引入了超双曲单曲问题的延长不连续的加列尔金分解法。基于先前对一维体的处理,我们将条形计算域分割成一个封闭区域,通过不连续的有限元素,使用图伦卓基函数分离,并采用无约束的子域,以缩放 Laguerre 函数作为依据。接口的数值通量使两个区域能够无缝地结合。由此得出的组合战略显示,在线性和非线性天平和载体模型问题的测试中,都会产生准确的数字解决方案。此外,可以在域的半无线部分模拟高效吸收层,以便在界面中用微小的微微微的刺激反射镜来掩射输出信号。通过调整拉盖尔基函数的缩放参数,扩展的DG系统模拟大空间尺度上的瞬态动态,与标准的单部不连续的固定元素技术相比,在一定的精确水平上大幅度降低计算成本。