Based on the construction of Poisson-Lie T-dual $\sigma$-models from a common parent action we study a candidate for the non-abelian respectively Poisson-Lie T-duality group. This group generalises the well-known abelian T-duality group O(d,d) and we explore some of its subgroups, namely factorised dualities, B- and $\beta$-shifts. The corresponding duality transformed $\sigma$-models are constructed and interpreted as generalised (non-geometric) flux backgrounds. We also comment on generalisations of results and techniques known from abelian T-duality. This includes the Lie algebra cohomology interpretation of the corresponding non-geometric flux backgrounds, remarks on a double field theory based on non-abelian T-duality and an application to the investigation of Yang-Baxter deformations. This will show that homogeneously Yang-Baxter deformed $\sigma$-models are exactly the non-abelian T-duality $\beta$-shifts when applied to principal chiral models.
翻译:根据从共同家长行动中建造的Poisson-Lie T-dual $-duma $-d-d) 模型,我们研究的是一名非贝利人(分别为Poisson-Lie T-qual Group)的候选者。这个小组概括了著名的ABelian T质量组O(d,d),我们探讨了其一些分组,即因子化二元、B-和$-beta$-轮班。相应的二元制转换成$\gma$-model,被构建和解读为一般化(非地基)通量背景。我们还评论了Abelian T-legal-T Gality所知道的结果和技术的概观。这包括对相应的非地表性非地表性通量背景的利代数共振学解释,关于基于非优等值T-T质量的双字段理论的评论,以及用于调查Yang-Baxter变形的应用程序。这将显示,纯性Yang-Baxter的变形的美元制成型模型正是非优性T-dleablian-qual ent ent ent ent ental ent ental ental ental ent ent ent $\qual-chata-chata-ch-ch-ch-ch-tistrupd-tits-tits。