Based on the construction of Poisson-Lie T-dual $\sigma$-models from a common parent action we study a candidate for the non-abelian respectively Poisson-Lie T-duality group. This group generalises the well-known abelian T-duality group O(d,d) and we explore some of its subgroups, namely factorised dualities, B- and $\beta$-shifts. The corresponding duality transformed $\sigma$-models are constructed and interpreted as generalised (non-geometric) flux backgrounds. We also comment on generalisations of results and techniques known from abelian T-duality. This includes the Lie algebra cohomology interpretation of the corresponding non-geometric flux backgrounds, remarks on a double field theory based on non-abelian T-duality and an application to the investigation of Yang-Baxter deformations. This will show that homogeneously Yang-Baxter deformed $\sigma$-models are exactly the non-abelian T-duality $\beta$-shifts when applied to principal chiral models.


翻译:根据从共同家长行动中建造的Poisson-Lie T-dual $-duma $-d-d) 模型,我们研究的是一名非贝利人(分别为Poisson-Lie T-qual Group)的候选者。这个小组概括了著名的ABelian T质量组O(d,d),我们探讨了其一些分组,即因子化二元、B-和$-beta$-轮班。相应的二元制转换成$\gma$-model,被构建和解读为一般化(非地基)通量背景。我们还评论了Abelian T-legal-T Gality所知道的结果和技术的概观。这包括对相应的非地表性非地表性通量背景的利代数共振学解释,关于基于非优等值T-T质量的双字段理论的评论,以及用于调查Yang-Baxter变形的应用程序。这将显示,纯性Yang-Baxter的变形的美元制成型模型正是非优性T-dleablian-qual ent ent ent ent ental ent ental ental ental ent ent ent $\qual-chata-chata-ch-ch-ch-ch-tistrupd-tits-tits。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员