As a result of 33 intercontinental Zoom calls, we characterise big Ramsey degrees of the generic partial order. This is an infinitary extension of the well known fact that finite partial orders endowed with linear extensions form a Ramsey class (this result was announced by Ne\v set\v ril and R\"odl in 1984 with first published proof by Paoli, Trotter and Walker in 1985). Towards this, we refine earlier upper bounds obtained by Hubi\v cka based on a new connection of big Ramsey degrees to the Carlson--Simpson theorem and we also introduce a new technique of giving lower bounds using an iterated application of the upper-bound theorem.
翻译:----
泛偏序列的大Ramsey度数的表征
研究论文摘要:
通过33个洲际Zoom会议的结果,我们对泛偏序列的大Ramsey度数进行了表征。这是对众所周知的有限偏序列线性扩展为Ramsey类的事实进行无限扩展的结果(这一结果由Ne\v set\v ril和R\"odl在1984年宣布,由Paoli、Trotter和Walker在1985年第一次发表)。
为此,我们进一步优化了Hubi\v cka早期得出的上界,并引入了一种新技术,通过上限定理的迭代应用给出下界,与Carlson--Simpson定理产生联系。