In general, a fractal is represented by its geometrical image. There are several mathematical ways to generate such figures but all systems generally transform an unordered set of fractals into another, unordered set of mathematical objects. All these methods require some mathematical knowledge for the generation of fractals. We describe a system that maps fractal images in arbitrary dimensions onto normalized, signed, integer sequences such that the correspondence is one-to-one. Such a set of sequences can easily be ordered; thus, the fractals can be easily catalogued and the sequence can be conveniently reverted to the corresponding figure. Using signed, integer sequences, we describe the isometries of the fractals using signed permutations that considerably simplify the substitutions. Such a correspondence may introduce a multitude of new sequences in the Online Encyclopedia of Integer Sequences and convert existing series to new fractals.
翻译:通常, 分形代表它的几何图像。 有几种数学方法可以生成这样的数字, 但所有系统一般都会将一组未经排序的分形转换成另一组未经排序的数学对象。 所有这些方法都需要有一定的数学知识来生成分形。 我们描述一个将任意尺寸的分形图像映射成标准化、 签名、 整数序列的系统, 使通信为一对一。 这样一套序列可以很容易地排序; 因此, 分形可以很容易地编目, 序列可以方便地恢复到相应的数字。 我们使用签名的、 整数序列来描述分形的缩写, 使用签名的变形可以大大简化替换。 这样通信可能会在 Integer 序列的在线百科全书中引入多种新序列, 并将现有序列转换为新的折形 。