The recent success of Bayesian methods in neuroscience and artificial intelligence gives rise to the hypothesis that the brain is a Bayesian machine. Since logic and learning are both practices of the human brain, it leads to another hypothesis that there is a Bayesian interpretation underlying both logical reasoning and machine learning. In this paper, we introduce a generative model of logical consequence relations. It formalises the process of how the truth value of a sentence is probabilistically generated from the probability distribution over states of the world. We show that the generative model characterises a classical consequence relation, paraconsistent consequence relation and nonmonotonic consequence relation. In particular, the generative model gives a new consequence relation that outperforms them in reasoning with inconsistent knowledge. We also show that the generative model gives a new classification algorithm that outperforms several representative algorithms in predictive accuracy and complexity on the Kaggle Titanic dataset.


翻译:贝叶斯人最近在神经科学和人工智能方面方法的成功引出了一种假设,即大脑是贝叶斯机器。由于逻辑和学习是人类大脑的两种做法,它又引出另一种假设,即存在着一种贝叶斯解释,它既支持逻辑推理,又支持机器学习。在本文中,我们引入了逻辑后果关系的基因化模型。它正式确定了一个句子的真理值是如何从世界各邦的概率分布中概率生成的。我们表明,基因化模型具有一种古老的后果关系、同义后果关系和非分子后果关系的特点。特别是,基因化模型提供了一种新的后果关系,在逻辑推理中超越了这些解释,而知识却不一致。我们还表明,基因化模型提供了一种新的分类算法,它比卡格勒泰坦尼克数据集的预测准确性和复杂性的几种代表性算法要强得多。

0
下载
关闭预览

相关内容

【斯坦福2021新书】决策算法,694页pdf阐述不确定性决策
专知会员服务
255+阅读 · 2021年1月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
非凸优化与统计学,89页ppt,普林斯顿Yuxin Chen博士
专知会员服务
102+阅读 · 2020年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年12月10日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
4+阅读 · 2018年11月26日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员