We develop the first fast spectral algorithm to decompose a random third-order tensor over R^d of rank up to O(d^{3/2}/polylog(d)). Our algorithm only involves simple linear algebra operations and can recover all components in time O(d^{6.05}) under the current matrix multiplication time. Prior to this work, comparable guarantees could only be achieved via sum-of-squares [Ma, Shi, Steurer 2016]. In contrast, fast algorithms [Hopkins, Schramm, Shi, Steurer 2016] could only decompose tensors of rank at most O(d^{4/3}/polylog(d)). Our algorithmic result rests on two key ingredients. A clean lifting of the third-order tensor to a sixth-order tensor, which can be expressed in the language of tensor networks. A careful decomposition of the tensor network into a sequence of rectangular matrix multiplications, which allows us to have a fast implementation of the algorithm.
翻译:我们开发了第一个快速光谱算法,以分解在O(d ⁇ 3/2}/polylog(d)之前等级之上的随机第三阶高压。我们的算法仅涉及简单的线性代数操作,在目前的矩阵乘法乘以时间(d ⁇ 6.05})下可以及时回收所有部件。在这项工作之前,只能通过阵形总和[Ma、Shi、Steurer 2016]实现类似的保证。相比之下,快速算法[Hopkins、Schramm、Shi、Steurer 2016]只能将最高O(d ⁇ 4/3}/polylog(d)级的振数分解。我们的算法结果取决于两个关键要素:将第三阶高压至六阶高压的清洁提升,这可以用高压网络的语言表示。将高压网络谨慎地分解成一个矩形矩阵乘数序列,使我们能够快速执行算法。