The dynamic behaviour of periodic thermodiffusive multi-layered media excited by harmonic oscillations is studied. In the framework of linear thermodiffusive elasticity, periodic laminates, whose elementary cell is composed by an arbitrary number of layers, are considered. The generalized Floquet-Bloch conditions are imposed, and the universal dispersion relation of the composite is obtained by means of an approach based on the formal solution for a single layer together with the transfer matrix method. The eigenvalue problem associated with the dispersion equation is solved by means of an analytical procedure based on the symplecticity properties of the transfer matrix to which corresponds a palindromic characteristic polynomial, and the frequency band structure associated to wave propagating inside the medium are finally derived. The proposed approach is tested through illustrative examples where thermodiffusive multilayered structures of interest for renewable energy devices fabrication are analyzed. The effects of thermodiffusion coupling on both the propagation and attenuation of Bloch waves in these systems are investigated in detail.


翻译:在线性热性弹性框架范围内,考虑到由任意数层组成的基本细胞层组成的周期层板块; 规定一般的Floquet-Bloch条件,并采用基于单一层正式解决方案的方法和转移矩阵法,使复合物的普遍分散关系得到实现。 与分散方程式相关的二元值问题,通过基于与介质特征多位特征相对应的转移矩阵的共感特性的分析程序加以解决,最终得出介质内波传播波的频率波段结构。 提议的方法通过示例进行测试,通过示例分析了可再生能源装置制造的热性多层利益结构,详细研究了这些系统中热性多层混合对布洛奇波的传播和衰减的影响。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员