Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
翻译:定期信号在日常生活中起着重要作用。尽管常规的连续模式在各个领域都表现出显著的成功,但它们在建模周期中仍然很短;它们要么崩溃,要么不同,要么忽略细节。在本文件中,我们引入了一个由Fourier系列启发的新框架,以生成定期信号。我们首先将给定信号分解成多个正弦和连结,然后用产出组成部分有条件地生成定期信号。我们已经在三个任务上展示了我们的模型效力:重建、估算和有条件的一代。我们的模型在所有任务中优于基线,并显示出更稳定、更完善的结果。