We introduce the \textit{generalized join the shortest queue model with retrials} and two infinite capacity orbit queues. Three independent Poisson streams of jobs, namely a \textit{smart}, and two \textit{dedicated} streams, flow into a single server system, which can hold at most one job. Arriving jobs that find the server occupied are routed to the orbits as follows: Blocked jobs from the \textit{smart} stream are routed to the shortest orbit queue, and in case of a tie, they choose an orbit randomly. Blocked jobs from the \textit{dedicated} streams are routed directly to their orbits. Orbiting jobs retry to connect with the server at different retrial rates, i.e., heterogeneous orbit queues. Applications of such a system are found in the modelling of wireless cooperative networks. We are interested in the asymptotic behaviour of the stationary distribution of this model, provided that the system is stable. More precisely, we investigate the conditions under which the tail asymptotic of the minimum orbit queue length is exactly geometric. Moreover, we apply a heuristic asymptotic approach to obtain approximations of the steady-state joint orbit queue-length distribution. Useful numerical examples are presented, and shown that the results obtained through the asymptotic analysis and the heuristic approach agreed.


翻译:我们引入了\ textit{ smart{ smart} 和两个不限容量轨道队列的最短队列模式。 三个独立的 Poisson 工作流, 即 \ textit{ smart} 和 2 \ textit{ dediated} 流, 流到一个单一的服务器系统, 最多可以维持一个任务。 找到服务器占用过的到此服务器的工作被选择到以下的轨道: 从 \ textit{smart} 流到最短的轨道队列的阻塞工作, 并且如果是连接, 它们随机选择一个轨道。 3个来自\ textit{ dedied} 流的被封锁的工作被直接选择到他们的轨道轨道。 运行任务将重新连接到服务器, 以不同的重审速度, 即多行列轨道队列。 在无线合作网络的建模中可以找到这种系统的应用程序。 我们感兴趣的是这个模型的固定分布的无症状行为, 只要这个系统是稳定的。 更确切地, 我们调查一个在什么条件下 尾部的轨道阵列的尾部排列方法下, 。 使用一个精确的轨道阵列方法 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
0+阅读 · 2022年1月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
生物探索
3+阅读 · 2018年2月10日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员