An old theorem of Ad\'amek constructs initial algebras for sufficiently cocontinuous endofunctors via transfinite iteration over ordinals in classical set theory. We prove a new version that works in constructive logic, using "inflationary" iteration over a notion of size that abstracts from limit ordinals just their transitive, directed and well-founded properties. Borrowing from Taylor's constructive treatment of ordinals, we show that sizes exist with upper bounds for any given signature of indexes. From this it follows that there is a rich class of endofunctors to which the new theorem applies, provided one admits a weak form of choice (WISC) due to Streicher, Moerdijk, van den Berg and Palmgren, and which is known to hold in the internal constructive logic of many kinds of elementary topos.
翻译:Ad\'amek 的老理论构建了初始代数, 用于通过对古典立体理论的正方形交替迭代, 足够连续的异端体的初始代数。 我们证明一个新版本在建设性逻辑中有效, 使用“ 通缩” 迭代, 用于从限序中摘述的大小概念, 仅仅是其中转性、 定向和有充分根据的属性。 从泰勒对正态的建设性处理中借取, 我们显示在任何特定指数的上界值中存在大小。 从这一点来看, 新的定理适用于丰富的异端体, 只要承认由于Streicher、 Moerdijk、 van den Berg 和 Palmgren, 并且众所周知, 在许多基本图案的内部建设性逻辑中存在一种薄弱的选择形式( WISC ) 。