A covering path for a planar point set is a path drawn in the plane with straight-line edges such that every point lies at a vertex or on an edge of the path. A covering tree is defined analogously. Let $\pi(n)$ be the minimum number such that every set of $n$ points in the plane can be covered by a noncrossing path with at most $\pi(n)$ edges. Let $\tau(n)$ be the analogous number for noncrossing covering trees. Dumitrescu, Gerbner, Keszegh, and T\'oth (Discrete & Computational Geometry, 2014) established the following inequalities: \[\frac{5n}{9} - O(1) < \pi(n) < \left(1-\frac{1}{601080391}\right)n, \quad\text{and} \quad\frac{9n}{17} - O(1) < \tau(n)\leqslant \left\lfloor\frac{5n}{6}\right\rfloor.\] We report the following improved upper bounds: \[\pi(n)\leqslant \left(1-\frac{1}{22}\right)n, \quad\text{and}\quad \tau(n)\leqslant \left\lceil\frac{4n}{5}\right\rceil.\] In the same context we study rainbow polygons. For a set of colored points in the plane, a perfect rainbow polygon is a simple polygon that contains exactly one point of each color in its interior or on its boundary. Let $\rho(k)$ be the minimum number such that every $k$-colored point set in the plane admits a perfect rainbow polygon of size $\rho(k)$. Flores-Pe\~naloza, Kano, Mart\'inez-Sandoval, Orden, Tejel, T\'oth, Urrutia, and Vogtenhuber (Discrete Mathematics, 2021) proved that $20k/19 - O(1) <\rho(k) < 10k/7 + O(1).$ We report the improved upper bound $\rho(k)< 7k/5 + O(1)$. To obtain the improved bounds we present simple $O(n\log n)$-time algorithms that achieve paths, trees, and polygons with our desired number of edges.
翻译:平面上的覆盖点路径是在平面上绘制的直线边缘的路径。 这样的路径可以使每个端点位于顶端或路径边缘。 相似地定义覆盖树 。 让 $\ pi( n) 是最小数, 使平面上每组的美元点都可以被非交叉路径覆盖, 最多在 $\ pi( n) 边缘 。 让 $\ tau( n) 成为不覆盖树的类似数字 。 (dumitrescu, Gerbner, Keszegh, 和 T'oth( discrete & Computuralational Geos, 2014) 建立了以下不平等: [\\\\\\ pec{\\\\\\ pain9} O(1) 平面上端路径( 1\\\\\\\\\\\ 10803\ r\ right) 设置了( droad\\\\\\ lior) a. (r\\\\\\\\\\\\\\\\\\\ dirmaxxxxxxxxxx a fi) a fil a fil a.</s>