Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network's structure as opposed to its function. Here we introduce a new information-theoretic tool: "information fragmentation analysis" that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices, we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved "in silico" solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and "think". The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.
翻译:评估生物网络(如神经和遗传网络)中的信息储存地点和方式是神经科学和分子遗传学的中心任务,但大多数可用工具侧重于网络结构而不是其功能。 我们在这里引入了一个新的信息理论工具:“信息碎裂分析 ” : 信息碎裂分析 ”, 根据完整的小类数据, 允许我们在复杂的网络中将信息本地化, 确定信息是如何分散的( 跨网络的多个节点), 并评估信息的加密程度。 使用信息碎裂矩阵, 我们还可以创建信息流图, 说明信息是如何通过这些网络传播的。 我们通过分析“ 硅” 进化的人工大脑如何解决特定任务, 并展示信息碎裂分析如何更深入地了解这些大脑过程的信息和“ 思考 ” 。 我们的方法所产生的信息碎裂和加密测量方法也量化了这些网络信息处理的复杂程度, 以及这种处理的复杂程度如何在最初接触感官数据( 生命周期早期) 和后来的常规处理之间有所区别 。