Group polarization, the phenomenon where individuals become more extreme after interacting, has been gaining attention, especially with the rise of social media shaping people's opinions. Recent interest has emerged in formal reasoning about group polarization using logical systems. In this work we consider the modal logic PNL that captures the notion of agents agreeing or disagreeing on a given topic. Our contribution involves enhancing PNL with advanced formal reasoning techniques, instead of relying on axiomatic systems for analyzing group polarization. To achieve this, we introduce a semantic game tailored for (hybrid) extensions of PNL. This game fosters dynamic reasoning about concrete network models, aligning with our goal of strengthening PNL's effectiveness in studying group polarization. We show how this semantic game leads to a provability game by systemically exploring the truth in all models. This leads to the first cut-free sequent systems for some variants of PNL. Using polarization of formulas, the proposed calculi can be modularly adapted to consider different frame properties of the underlying model.
翻译:暂无翻译