An important challenge for enabling the deployment of reinforcement learning (RL) algorithms in the real world is safety. This has resulted in the recent research field of Safe RL, which aims to learn optimal policies that are safe. One successful approach in that direction is probabilistic logic shields (PLS), a model-based Safe RL technique that uses formal specifications based on probabilistic logic programming, constraining an agent's policy to comply with those specifications in a probabilistic sense. However, safety is inherently a multi-agent concept, since real-world environments often involve multiple agents interacting simultaneously, leading to a complex system which is hard to control. Moreover, safe multi-agent RL (Safe MARL) is still underexplored. In order to address this gap, in this paper we ($i$) introduce Shielded MARL (SMARL) by extending PLS to MARL -- in particular, we introduce Probabilistic Logic Temporal Difference Learning (PLTD) to enable shielded independent Q-learning (SIQL), and introduce shielded independent PPO (SIPPO) using probabilistic logic policy gradients; ($ii$) show its positive effect and use as an equilibrium selection mechanism in various game-theoretic environments including two-player simultaneous games, extensive-form games, stochastic games, and some grid-world extensions in terms of safety, cooperation, and alignment with normative behaviors; and ($iii$) look into the asymmetric case where only one agent is shielded, and show that the shielded agent has a significant influence on the unshielded one, providing further evidence of SMARL's ability to enhance safety and cooperation in diverse multi-agent environments.
翻译:暂无翻译