Incorporating personal preference is crucial in advanced machine translation tasks. Despite the recent advancement of machine translation, it remains a demanding task to properly reflect personal style. In this paper, we introduce a personalized automatic post-editing framework to address this challenge, which effectively generates sentences considering distinct personal behaviors. To build this framework, we first collect post-editing data that connotes the user preference from a live machine translation system. Specifically, real-world users enter source sentences for translation and edit the machine-translated outputs according to the user's preferred style. We then propose a model that combines a discriminator module and user-specific parameters on the APE framework. Experimental results show that the proposed method outperforms other baseline models on four different metrics (i.e., BLEU, TER, YiSi-1, and human evaluation).
翻译:尽管机器翻译最近取得了进展,但在高级机器翻译任务中恰当地反映个人风格仍然是一项具有挑战性的任务。在本文中,我们介绍了一种个性化的自动后编辑框架,以解决这一挑战,该框架有效地生成考虑到不同个人行为的句子。为了构建这个框架,我们首先从实时机器翻译系统中收集包含用户喜好的后编辑数据。具体来说,真实世界的用户输入要翻译的源句子,并根据用户的首选样式编辑机器翻译的输出。然后,我们提出了一种在APE框架上结合鉴别器模块和用户特定参数的模型。实验结果表明,所提出的方法在四种不同的度量标准(即BLEU、TER、YiSi-1和人工评估)上优于其他基线模型。