Specularity prediction is essential to many computer vision applications, giving important visual cues usable in Augmented Reality (AR), Simultaneous Localisation and Mapping (SLAM), 3D reconstruction and material modeling. However, it is a challenging task requiring numerous information from the scene including the camera pose, the geometry of the scene, the light sources and the material properties. Our previous work addressed this task by creating an explicit model using an ellipsoid whose projection fits the specularity image contours for a given camera pose. These ellipsoid-based approaches belong to a family of models called JOint-LIght MAterial Specularity (JOLIMAS), which we have gradually improved by removing assumptions on the scene geometry. However, our most recent approach is still limited to uniformly curved surfaces. This paper generalises JOLIMAS to any surface geometry while improving the quality of specularity prediction, without sacrificing computation performances. The proposed method establishes a link between surface curvature and specularity shape in order to lift the geometric assumptions made in previous work. Contrary to previous work, our new model is built from a physics-based local illumination model namely Torrance-Sparrow, providing an improved reconstruction. Specularity prediction using our new model is tested against the most recent JOLIMAS version on both synthetic and real sequences with objects of various general shapes. Our method outperforms previous approaches in specularity prediction, including the real-time setup, as shown in the supplementary videos.
翻译:特殊性预测对于许多计算机视觉应用至关重要, 它提供了可用于增强真实性(AR) 、 同步本地化和绘图(SLAM) 、 3D 重建和材料建模的重要视觉提示。 但是, 这是一项具有挑战性的任务, 需要现场提供大量信息, 包括相机布局、 屏幕的几何、 光源 和物质属性。 我们先前的工作通过使用一个符合特定相机布局的光度图像轮廓的清晰模型来应对这项任务。 这些基于闪光度的模型属于一个名为 JOint- Ligt mistiral Speciality (JOLIMAS) 的模型, 我们通过删除现场几处的测图, 逐渐改进了这些模型。 然而, 我们最近采用的方法仍然局限于统一的曲线表面表面表面。 本文的概略性预测质量不牺牲了某个相机的计算性能。 拟议的方法在地表曲线和光度形状之间建立起一个链接, 以便提升在先前工作中绘制的几何直径直径直径图像的模型。 在以往的工作中, 将新的模型中, 提供我们之前的精确性模型, 的精确性,, 向前的精确地平面的精确地平面的预测 。