As transfer learning techniques are increasingly used to transfer knowledge from the source model to the target task, it becomes important to quantify which source models are suitable for a given target task without performing computationally expensive fine tuning. In this work, we propose HASTE (HArd Subset TransfErability), a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data. By leveraging the internal and output representations of model, we introduce two techniques, one class agnostic and another class specific, to identify harder subsets and show that HASTE can be used with any existing transferability metric to improve their reliability. We further analyze the relation between HASTE and the optimal average log likelihood as well as negative conditional entropy and empirically validate our theoretical bounds. Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
翻译:随着转移学习技术越来越多地用于将知识从源模式转移到目标任务,在不进行成本高昂的计算微调的情况下,必须量化哪些源模型适合特定目标任务。在这项工作中,我们提出HASTE(HARD Subset TransfErperity),这是一个新战略,仅使用较难的目标数据子集来估计源模型向特定目标任务转移的可能性。我们通过利用模型的内部和产出表示方式,引入了两种技术,一种是分类意识,另一种是特定类别,以识别较难的子集,并表明HASTE可以与任何现有的可转让性指标一起使用,以提高其可靠性。我们进一步分析了HASTE与最佳平均日志可能性之间的关系,以及负性有条件加密和实验性验证我们的理论界限。我们跨多个源模型结构、目标数据集和传输学习任务的实验结果显示,ASTE修改后的计量方法始终更好,或与艺术可转移性衡量标准相同。