In this paper, we investigate the problem of distributed transmission control for unmanned aerial vehicles (UAVs) operating in unlicensed spectrum bands. We develop a rigorous interference-aware queuing analysis framework that jointly considers two inter-dependent factors: (i) limited-size queues with delay-constrained packet arrival, and (ii) in-band interference introduced by other ground/aerial users. We aim to optimize the expected throughput by jointly analyzing these factors. In the queuing analysis, we explore two packet loss probabilities including, buffer overflow model and time threshold model. For interference analysis, we investigate the outage probability and packet losses due to low signal-to-interference-plus-noise ratio (SINR). We introduce two algorithms namely, Interference-Aware Transmission Control (IA-TC), and Interference-Aware Distributed Transmission Control (IA-DTC). These algorithms maximize the expected throughput by adjusting transmission policies to balance the trade-offs between packet drop from queues vs. transmission errors due to low SINRs. We implement the proposed algorithms and demonstrate that the optimal transmission policy under various scenarios is found.
翻译:暂无翻译