In this paper, we present Fusion-GCN, an approach for multimodal action recognition using Graph Convolutional Networks (GCNs). Action recognition methods based around GCNs recently yielded state-of-the-art performance for skeleton-based action recognition. With Fusion-GCN, we propose to integrate various sensor data modalities into a graph that is trained using a GCN model for multi-modal action recognition. Additional sensor measurements are incorporated into the graph representation, either on a channel dimension (introducing additional node attributes) or spatial dimension (introducing new nodes). Fusion-GCN was evaluated on two public available datasets, the UTD-MHAD- and MMACT datasets, and demonstrates flexible fusion of RGB sequences, inertial measurements and skeleton sequences. Our approach gets comparable results on the UTD-MHAD dataset and improves the baseline on the large-scale MMACT dataset by a significant margin of up to 12.37% (F1-Measure) with the fusion of skeleton estimates and accelerometer measurements.


翻译:在本文中,我们介绍“Fusion-GCN”,这是一种利用“图变网络”确认多式联运行动的方法;基于“GCN”的行动识别方法,最近以“GCN”为基础,产生了基于骨骼的动作识别的最先进性能;与“GCN”结合,我们提议将各种传感器数据模式纳入一个使用“GCN”多模式行动识别模型培训的图表中;在“图示”中包含更多的传感器测量,或者在“频道”层面(引入额外的节点属性),或者在“空间”层面(引入新的节点),对“Fsion-GCN”进行了评估;对两个公开数据集(UTD-MHAD-和MMACT数据集)进行了评估,并展示了RGB序列、惯性测量和骨骼序列的灵活融合;我们的方法在“UTD-MHAD”数据集上取得了可比的结果,并改进了大规模MMACT数据集的基线,其基质估计和加速度测量的幅度高达12.37%(F1-计量)。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
111+阅读 · 2019年11月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关VIP内容
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
111+阅读 · 2019年11月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
【泡泡一分钟】OFF:快速鲁棒视频动作识别的运动表征
泡泡机器人SLAM
3+阅读 · 2019年3月12日
行为识别(action recognition)目前的难点在哪?
极市平台
36+阅读 · 2019年2月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员