Online Food Ordering Service (OFOS) is a popular location-based service that helps people to order what you want. Compared with traditional e-commerce recommendation systems, users' interests may be diverse under different spatiotemporal contexts, leading to various spatiotemporal data distribution, which limits the fitting capacity of the model. However, numerous current works simply mix all samples to train a set of model parameters, which makes it difficult to capture the diversity in different spatiotemporal contexts. Therefore, we address this challenge by proposing a Bottom-up Adaptive Spatiotemporal Model(BASM) to adaptively fit the spatiotemporal data distribution, which further improve the fitting capability of the model. Specifically, a spatiotemporal-aware embedding layer performs weight adaptation on field granularity in feature embedding, to achieve the purpose of dynamically perceiving spatiotemporal contexts. Meanwhile, we propose a spatiotemporal semantic transformation layer to explicitly convert the concatenated input of the raw semantic to spatiotemporal semantic, which can further enhance the semantic representation under different spatiotemporal contexts. Furthermore, we introduce a novel spatiotemporal adaptive bias tower to capture diverse spatiotemporal bias, reducing the difficulty to model spatiotemporal distinction. To further verify the effectiveness of BASM, we also novelly propose two new metrics, Time-period-wise AUC (TAUC) and City-wise AUC (CAUC). Extensive offline evaluations on public and industrial datasets are conducted to demonstrate the effectiveness of our proposed modle. The online A/B experiment also further illustrates the practicability of the model online service. This proposed method has now been implemented on the Ele.me, a major online food ordering platform in China, serving more than 100 million online users.
翻译:在线食品订单服务(OFOS)是一个广受欢迎的基于地点的服务,它帮助人们按您想要的排序。与传统的电子商务建议系统相比,用户的兴趣在不同的时空环境中可能各不相同,导致各种时空数据分布,从而限制模型的适配能力。然而,许多当前工作只是将所有样本混在一起,以训练一套模型参数,从而难以在不同时空环境中捕捉多样性。因此,我们通过提出一个自下而上的适应性适应性 Spatotemoteal 模型(BASM)来应对这一挑战。与传统的电子商务建议系统相比,用户的利益在不同的时空环境中可能不同,用户的利益分配层对实地颗粒的重量进行适应。同时,我们提议一个更深层次的语系模型转换层结构,将原始的智能模型的内流数据转换为更深层的内脏数据分布,这可以进一步提升模型的适应性功能。 在线的货币结构化分析,在不同的时空分析中可以进一步显示我们内部的货币结构分析。