In-flight objects capture is extremely challenging. The robot is required to complete trajectory prediction, interception position calculation and motion planning in sequence within tens of milliseconds. As in-flight uneven objects are affected by various kinds of forces, motion prediction is difficult for a time-varying acceleration. In order to compensate the system's non-linearity, we introduce the Neural Acceleration Estimator (NAE) that estimates the varying acceleration by observing a small fragment of previous deflected trajectory. Moreover, end-to-end training with Differantiable Filter (NAE-DF) gives a supervision for measurement uncertainty and further improves the prediction accuracy. Experimental results show that motion prediction with NAE and NAE-DF is superior to other methods and has a good generalization performance on unseen objects. We test our methods on a robot, performing velocity control in real world and respectively achieve 83.3% and 86.7% success rate on a ploy urethane banana and a gourd. We also release an object in-flight dataset containing 1,500 trajectorys for uneven objects.
翻译:在飞行中捕获物体是极具挑战性的。 机器人需要在数十毫秒内完成轨迹预测、 拦截位置计算和运动规划。 由于飞行中分布不均的物体受到各种力量的影响, 运动预测很难在时间上变速加速。 为了补偿系统的非线性, 我们引入神经加速动测算器(NAE ), 通过观察先前偏向轨道的小碎片来估计不同的加速率。 此外, 与可变过滤器(NAE-DF)进行端对端训练可以监督测量的不确定性并进一步提高预测的准确性。 实验结果显示, NAE 和NAE- DF 的运动预测优于其他方法, 并且对看不见物体具有良好的通用性性性。 我们用机器人测试我们的方法, 在现实世界中进行速度控制, 并分别实现83.3% 和86.7%的超速率, 使用一种木质的乙型香蕉和一种谷类。 我们还释放了一个包含1500个不均物体轨轨迹的飞行物体的物体在飞行中的数据集。