Training time budget and size of the dataset are among the factors affecting the performance of a Deep Neural Network (DNN). This paper shows that Neural Architecture Search (NAS), Hyper Parameters Optimization (HPO), and Data Augmentation help DNNs perform much better while these two factors are limited. However, searching for an optimal architecture and the best hyperparameter values besides a good combination of data augmentation techniques under low resources requires many experiments. We present our approach to achieving such a goal in three steps: reducing training epoch time by compressing the model while maintaining the performance compared to the original model, preventing model overfitting when the dataset is small, and performing the hyperparameter tuning. We used NOMAD, which is a blackbox optimization software based on a derivative-free algorithm to do NAS and HPO. Our work achieved an accuracy of 86.0 % on a tiny subset of Mini-ImageNet at the ICLR 2021 Hardware Aware Efficient Training (HAET) Challenge and won second place in the competition. The competition results can be found at haet2021.github.io/challenge and our source code can be found at github.com/DouniaLakhmiri/ICLR\_HAET2021.
翻译:培训时间预算以及数据集的大小是影响深神经网络(DNN)绩效的因素之一。本文表明,神经结构搜索(NAS)、超参数优化(HPO)和数据增强帮助DNNS在这两个因素有限的情况下表现更好。然而,在低资源下寻找最佳架构和最佳超光度值,除了数据增强技术的良好组合之外,还需要在低资源下进行许多试验。我们用三个步骤来实现这一目标:压缩模型,同时保持与原始模型相比,从而减少培训的时段,防止模型在数据集小时过度安装,并进行超参数调。我们使用了NOMAD,这是一个黑箱优化软件,基于无衍生物的算法进行NAS和HPO。我们的工作在ILR 2021 硬软件了解效率培训(HAET) 挑战并赢得竞争中的第二位。竞争结果可以在 haet2021.github. githirekh/Dochall 和我们的源代码上找到。