Imputing censored covariates with conditional means is appealing, but existing methods saw >100% bias. Calculating conditional means requires estimating and integrating over the survival function of the censored covariate from the censored value to infinity. Existing methods semiparametrically estimate the survival function but incur bias by using the trapezoidal rule, thereby treating this indefinite integral as a definite one. We integrate with adaptive quadrature instead. Yet, the integrand is undefined beyond the data, so we identify the best extrapolation method to use with quadrature. Our approach leads to unbiased imputation in simulations and helps prioritize patients for Huntington's disease clinical trials.
翻译:使用有条件手段对受审查的共产体进行截肢的共变体具有吸引力,但现有方法的偏差大于100%。 计算有条件手段需要估算和整合被审查的共产体从受审查价值到无限性的生存功能。 现有方法可以对生存功能进行半分估计,但通过使用捕捉性自相残杀规则而产生偏差,从而将这一无限的整体性作为确定规则处理。 相反,我们与适应性二次曲线融合在一起。 然而,正数在数据之外没有定义, 所以我们要找出使用二次曲线的最佳外推法。 我们的方法在模拟中可以产生公正的估算结果, 并有助于将亨廷顿病临床试验的病人列为优先。