In this work we introduce a method for estimating entropy rate and entropy production rate from finite symbolic time series. From the point of view of statistics, estimating entropy from a finite series can be interpreted as a problem of estimating parameters of a distribution with a censored or truncated sample. We use this point of view to give estimations of entropy rate and entropy production rate assuming that they are parameters of a (limit) distribution. The last statement is actually a consequence of the fact that the distribution of estimations obtained from recurrence-time statistics satisfy the central limit theorem. We test our method using time series coming from Markov chain models, discrete-time chaotic maps and real a DNA sequence from human genome.
翻译:在这项工作中,我们引入了一种方法,从有限的象征性时间序列中估算酶率和酶产量率。从统计的角度来看,从一个有限序列中估算酶值可被解释为一个问题,即用受审查或短短抽样估计分布参数的问题。我们用这个观点来估计酶率和酶产量率,假设它们是一个(限制)分布参数。最后一句话实际上是由于从重复时间统计中得出的估计值的分布符合中心限值理论的结果。我们用来自Markov 链条模型的时间序列、离散时间混乱图和人类基因组的DNA序列来测试我们的方法。