Causal discovery is a fundamental problem in statistics and has wide applications in different fields. Transfer Entropy (TE) is a important notion defined for measuring causality, which is essentially conditional Mutual Information (MI). Copula Entropy (CE) is a theory on measurement of statistical independence and is equivalent to MI. In this paper, we prove that TE can be represented with only CE and then propose a non-parametric method for estimating TE via CE. The proposed method was applied to analyze the Beijing PM2.5 data in the experiments. Experimental results show that the proposed method can infer causality relationships from data effectively and hence help to understand the data better.
翻译:原因发现是统计中的一个根本问题,在不同领域具有广泛的应用性。 转移 Entropy(TE)是衡量因果关系的一个重要概念,它基本上是有条件的相互信息(MI)。 Copula Entropy(CE)是衡量统计独立性的理论,相当于 MI。 在本文中,我们证明,TE只能代表CE, 然后提出通过CE估算TE的非参数方法。 拟议的方法用于分析实验中的北京PM2.5数据。 实验结果显示,拟议的方法可以有效地从数据中推断因果关系,从而有助于更好地了解数据。