Deep learning based image quality assessment (IQA) models usually learn to predict image quality from a single dataset, leading the model to overfit specific scenes. To account for this, mixed datasets training can be an effective way to enhance the generalization capability of the model. However, it is nontrivial to combine different IQA datasets, as their quality evaluation criteria, score ranges, view conditions, as well as subjects are usually not shared during the image quality annotation. In this paper, instead of aligning the annotations, we propose a monotonic neural network for IQA model learning with different datasets combined. In particular, our model consists of a dataset-shared quality regressor and several dataset-specific quality transformers. The quality regressor aims to obtain the perceptual qualities of each dataset while each quality transformer maps the perceptual qualities to the corresponding dataset annotations with their monotonicity maintained. The experimental results verify the effectiveness of the proposed learning strategy and our code is available at https://github.com/fzp0424/MonotonicIQA.
翻译:深学习基图像质量评估( IQA) 模型通常学会从单一数据集中预测图像质量, 使模型过分适应特定场景。 为此, 混合数据集培训可以成为提高模型通用能力的有效途径。 但是, 将不同IQA数据集组合起来, 因为它们的质量评估标准、 评分范围、 视图条件以及主题通常在图像质量注释中不共享。 在本文中, 我们建议用不同的数据集组合为IQA模型学习建立一个单声神经网络。 特别是, 我们的模型包括数据集共享质量递增器和多个数据集特定质量变异器。 质量递增器的目的是获取每个数据集的感性, 而每个质量变异器则用其单调来绘制相应的数据集说明的感性能。 实验结果验证了拟议学习战略的有效性, 我们的代码可以在 https://github.com/fzp0424/MonotonicIQA 上查阅 。