Approximate message passing (AMP) algorithms break a (high-dimensional) statistical problem into parts then repeatedly solve each part in turn, akin to alternating projections. A distinguishing feature is their asymptotic behaviours can be accurately predicted via their associated state evolution equations. Orthogonal AMP (OAMP) was recently developed to avoid the need for computing the so-called Onsager term in traditional AMP algorithms, providing two clear benefits: the derivation of an OAMP algorithm is both straightforward and more broadly applicable. OAMP was originally demonstrated for statistical problems with a single measurement vector and single transform. This paper extends OAMP to statistical problems with multiple measurement vectors (MMVs) and multiple transforms (MTs). We name the resulting algorithms as OAMP-MMV and OAMP-MT respectively, and their combination as augmented OAMP (A-OAMP). Whereas the extension of traditional AMP algorithms to such problems would be challenging, the orthogonal principle underpinning OAMP makes these extensions straightforward. The MMV and MT models are widely applicable to signal processing and communications. We present an example of MIMO relay system with correlated source data and signal clipping, which can be modelled as a joint MMV-MT system. While existing methods meet with difficulties in this example, OAMP offers an efficient solution with excellent performance.


翻译:近似消息传递(AMP)算法将一个(高维)统计问题分解为部分,然后依次解决每个部分,类似于交替投影。其显著特点是可以通过其相应的状态演化方程准确地预测其渐近行为。最近开发了正交AMP(OAMP)算法,以避免计算传统AMP算法中所谓的Onsager项的需求,提供了两个明显的优点:导出OAMP算法既简单又更广泛适用。 OAMP最初用于具有单个测量向量和单个变换的统计问题。本文将OAMP扩展到具有多个测量向量(MMVs)和多个变换(MTs)的统计问题。我们将生成的算法命名为OAMP-MMV和OAMP-MT,将它们的组合称为增强的OAMP(A-OAMP)。OAMP的正交原则使得将传统的AMP算法扩展到这样的问题变得简单。MMV和MT模型在信号处理和通信中广泛适用。我们提供了一个MIMO中继系统的示例,其中包含相关源数据和信号剪辑,可以将其建模为一个联合MMV-MT系统。虽然现有方法在这个例子中会遇到困难,但OAMP提供了一个具有出色性能的高效解决方案。

0
下载
关闭预览

相关内容

【图神经网络实用介绍】A practical introduction to GNNs - Part 1
专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员