In this paper, the correlation between nearby user equipment (UE) is exploited, and a deep learning-based channel state information (CSI) feedback and cooperative recovery framework, CoCsiNet, is developed to reduce feedback overhead. The CSI information can be divided into two parts: shared by nearby UE and owned by individual UE. The key idea of exploiting the correlation is to reduce the overhead used to feedback the shared information repeatedly. Unlike in the general autoencoder framework, an extra decoder and a combination network are added at the base station to recover the shared information from the feedback CSI of two nearby UEs and combine the shared and individual information, respectively, but no modification is performed at the UEs. For a UE with multiple antennas, a baseline neural network architecture with long short-term memory modules is introduced to extract the correlation of nearby antennas. Given that the CSI phase is not sparse, two magnitude-dependent phase feedback strategies that introduce statistical and instant CSI magnitude information to the phase feedback process are proposed. Simulation results on two different channel datasets show the effectiveness of the proposed CoCsiNet.
翻译:本文探讨了附近用户设备(UE)的关联性,并开发了一个基于深层次学习的频道状态信息反馈和合作恢复框架(CoCsiNet),以减少反馈管理费用。CSI信息可以分为两个部分:由附近的UE共享,由个人UE拥有。利用这一关联性的关键想法是减少用于反复反馈共享信息的管理费用。与一般自动编码框架不同,基地台增加了一个额外的解码器和一个组合网络,以分别从附近两个用户的反馈CSI中获取共享的信息,并将共享和单独的信息合并起来,但是在Ues没有进行修改。对于带有多个天线的UE,采用了一个具有长期短期记忆模块的基线神经网络结构,以提取附近天线的关联性。鉴于CSI阶段并不稀少,因此提出了两个规模依赖阶段反馈战略,向阶段反馈进程引入统计和即时 CSI级信息。模拟两个不同频道数据集的结果显示拟议的CosiNet的有效性。